
113

CHAPTER 5

The IPv4 Routing Subsystem

Chapter 4 discussed the IPv4 subsystem. In this chapter and the next I discuss one of the most important Linux
subsystems, the routing subsystem, and its implementation in Linux. The Linux routing subsystem is used in a wide
range of routers—from home and small office routers, to enterprise routers (which connect organizations or ISPs)
and core high speed routers on the Internet backbone. It is impossible to imagine the modern world without these
devices. The discussion in these two chapters is limited to the IPv4 routing subsystem, which is very similar to the
IPv6 implementation. This chapter is mainly an introduction and presents the main data structures that are used
by the IPv4 routing subsystem, like the routing tables, the Forwarding Information Base (FIB) info and the FIB alias,
the FIB TRIE and more. (TRIE is not an acronym, by the way, but it is derived from the word retrieval). The TRIE is a
data structure, a special tree that replaced the FIB hash table. You will learn how a lookup in the routing subsystem is
performed, how and when ICMP Redirect messages are generated, and about the removal of the routing cache code.
Note that the discussion and the code examples in this chapter relate to kernel 3.9, except for two sections where a
different kernel version is explicitly mentioned.

Forwarding and the FIB
One of the important goals of the Linux Networking stack is to forward traffic. This is relevant especially when
discussing core routers, which operate in the Internet backbone. The Linux IP stack layer, responsible for forwarding
packets and maintaining the forwarding database, is called the routing subsystem. For small networks, management
of the FIB can be done by a system administrator, because most of the network topology is static. When discussing
core routers, the situation is a bit different, as the topology is dynamic and there is a vast amount of ever-changing
information. In this case, management of the FIB is done usually by userspace routing daemons, sometimes in
conjunction with special hardware enhancements. These userspace daemons usually maintain routing tables of their
own, which sometimes interact with the kernel routing tables.

Let’s start with the basics: what is routing? Take a look at a very simple forwarding example: you have two
Ethernet Local Area Networks, LAN1 and LAN2. On LAN1 you have a subnet of 192.168.1.0/24, and on LAN2 you have
a subnet of 192.168.2.0/24. There is a machine between these two LANs, which will be called a “forwarding router.”
There are two Ethernet network interface cards (NICs) in the forwarding router. The network interface connected to
LAN1 is eth0 and has an IP address of 192.168.1.200, and the network interface connected to LAN2 is eth1 and has
an IP address of 192.168.2.200, as you can see in Figure 5-1. For the sake of simplicity, let’s assume that no firewall
daemon runs on the forwarding router. You start sending traffic from LAN1, which is destined to LAN2. The process
of forwarding incoming packets, which are sent from LAN1 and which are destined to LAN2 (or vice versa), according
to data structures that are called routing tables, is called routing. I discuss this process and the routing table data
structures in this chapter and in the next as well.

CHAPTER 5 ■ THE IPV4 ROUTING SUBSYSTEM

114

In Figure 5-1, packets that arrive on eth0 from LAN1, which are destined to LAN2, are forwarded via eth1 as the
outgoing device. In this process, the incoming packets move from Layer 2 (the link layer) in the kernel networking
stack, to Layer 3, the network layer, in the forwarding router machine. As opposed to the case where the traffic is
destined to the forwarding router machine (“Traffic to me”), however, there is no need to move the packets to Layer
4 (the transport layer) because this traffic in not intended to be handled by any Layer 4 transport socket. This traffic
should be forwarded. Moving to Layer 4 has a performance cost, which is better to avoid whenever possible. This
traffic is handled in Layer 3, and, according to the routing tables configured on the forwarding router machine,
packets are forwarded on eth1 as the outgoing interface (or rejected).

Figure 5-2 shows the three network layers handled by the kernel that were mentioned earlier.

Figure 5-1. Forwarding packets between two LANs

Figure 5-2. The three layers that are handled by the networking kernel stack

Two additional terms that I should mention here, which are commonly used in routing, are default gateway and
default route. When you are defining a default gateway entry in a routing table, every packet that is not handled by the
other routing entries (if there are such entries) must be forwarded to it, regardless of the destination address in the IP
header of this packet. The default route is designated as 0.0.0.0/0 in Classless Inter-Domain Routing (CIDR) notation.
As a simple example, you can add a machine with an IPv4 address of 192.168.2.1 as a default gateway as follows:

ip route add default via 192.168.2.1

Or, when using the route command, like this:

route add default gateway 192.168.2.1

CHAPTER 5 ■ THE IPV4 ROUTING SUBSYSTEM

115

In this section you learned what forwarding is and saw a simple example illustrating how packets are forwarded
between two LANs. You also learned what a default gateway is and what a default route is, and how to add them.
Now that you know the basic terminology and what forwarding is, let’s move on and see how a lookup in the routing
subsystem is performed.

Performing a Lookup in the Routing Subsystem
A lookup in the routing subsystem is done for each packet, both in the Rx path and in the Tx path. In kernels prior to 3.6,
each lookup, both in the Rx path and in the Tx path, consisted of two phases: a lookup in the routing cache and, in case
of a cache miss, a lookup in the routing tables (I discuss the routing cache at the end of this chapter, in the “IPv4 Routing
Cache” section). A lookup is done by the fib_lookup() method. When the fib_lookup() method finds a proper entry
in the routing subsystem, it builds a fib_result object, which consists of various routing parameters, and it returns 0.
I discuss the fib_result object in this section and in other sections of this chapter. Here is the fib_lookup() prototype:

int fib_lookup(struct net *net, const struct flowi4 *flp, struct fib_result *res)

The flowi4 object consists of fields that are important to the IPv4 routing lookup process, including the
destination address, source address, Type of Service (TOS), and more. In fact the flowi4 object defines the key to the
lookup in the routing tables and should be initialized prior to performing a lookup with the fib_lookup() method.
For IPv6 there is a parallel object named flowi6; both are defined in include/net/flow.h. The fib_result object
is built in the IPv4 lookup process. The fib_lookup() method first searches the local FIB table. If the lookup fails, it
performs a lookup in the main FIB table (I describe these two tables in the next section, “FIB tables”). After a lookup
is successfully done, either in the Rx path or the Tx path, a dst object is built (an instance of the dst_entry structure,
the destination cache, defined in include/net/dst.h). The dst object is embedded in a structure called rtable, as
you will soon see. The rtable object, in fact, represents a routing entry which can be associated with an SKB. The
most important members of the dst_entry object are two callbacks named input and output. In the routing lookup
process, these callbacks are assigned to be the proper handlers according to the routing lookup result. These two
callbacks get only an SKB as a parameter:

struct dst_entry {
 ...
 int (*input)(struct sk_buff *);
 int (*output)(struct sk_buff *);
 ...
}

The following is the rtable structure; as you can see, the dst object is the first object in this structure:

struct rtable {
 struct dst_entry dst;

 int rt_genid;
 unsigned int rt_flags;
 __u16 rt_type;
 __u8 rt_is_input;
 __u8 rt_uses_gateway;

 int rt_iif;

 /* Info on neighbour */
 __be32 rt_gateway;

CHAPTER 5 ■ THE IPV4 ROUTING SUBSYSTEM

116

 /* Miscellaneous cached information */
 u32 rt_pmtu;

 struct list_head rt_uncached;
};

(include/net/route.h)

The following is a description of the members of the rtable structure:

•฀ rt_flags: The rtable object flags; some of the important flags are mentioned here:

RTCF_BROADCAST: When set, the destination address is a broadcast address. This flag is •฀
set in the __mkroute_output() method and in the ip_route_input_slow() method.

RTCF_MULTICAST: When set, the destination address is a multicast address. This flag is •฀
set in the ip_route_input_mc() method and in the __mkroute_output() method.

RTCF_DOREDIRECT: When set, an ICMPv4 Redirect message should be sent as a •฀
response for an incoming packet. Several conditions should be fulfilled for this flag
to be set, including that the input device and the output device are the same and the
corresponding procfs send_redirects entry is set. There are more conditions, as you
will see later in this chapter. This flag is set in the __mkroute_input() method.

RTCF_LOCAL: When set, the destination address is local. This flag is set in the following •฀
methods: ip_route_input_slow(), __mkroute_output(), ip_route_input_mc() and
__ip_route_output_key(). Some of the RTCF_XXX flags can be set simultaneously. For
example, RTCF_LOCAL can be set when RTCF_BROADCAST or RTCF_MULTICAST are
set. For the complete list of RTCF_ XXX flags, look in include/uapi/linux/in_route.h.
Note that some of them are unused.

•฀ rt_is_input: A flag that is set to 1 when this is an input route.

•฀ rt_uses_gateway: Gets a value according to the following:

When the nexthop is a gateway, •฀ rt_uses_gateway is 1.

When the nexthop is a direct route, •฀ rt_uses_gateway is 0.

•฀ rt_iif: The ifindex of the incoming interface. (Note that the rt_oif member was removed
from the rtable structure in kernel 3.6; it was set to the oif of the specified flow key, but was
used in fact only in one method).

•฀ rt_pmtu: The Path MTU (the smallest MTU along the route).

Note that in kernel 3.6, the fib_compute_spec_dst() method was added, which gets an
SKB as a parameter. This method made the rt_spec_dst member of the rtable structure
unneeded, and rt_spec_dst was removed from the rtable structure as a result. The fib_
compute_spec_dst() method is needed in special cases, such as in the icmp_reply() method,
when replying to the sender using its source address as a destination for the reply.

For incoming unicast packets destined to the local host, the input callback of the dst object is set to
ip_local_deliver(), and for incoming unicast packets that should be forwarded, this input callback is set to
ip_forward(). For a packet generated on the local machine and sent away, the output callback is set to be ip_output().
For a multicast packet, the input callback can be set to ip_mr_input() (under some conditions which are not detailed

CHAPTER 5 ■ THE IPV4 ROUTING SUBSYSTEM

117

in this chapter). There are cases when the input callback is set to be ip_error(), as you will see later in the PROHIBIT
rule example in this chapter. Let’s take a look in the fib_result object:

struct fib_result {
 unsigned char prefixlen;
 unsigned char nh_sel;
 unsigned char type;
 unsigned char scope;
 u32 tclassid;
 struct fib_info *fi;
 struct fib_table *table;
 struct list_head *fa_head;
};

(include/net/ip_fib.h)

•฀ prefixlen: The prefix length, which represents the netmask. Its values are in the range 0 to 32.
It is 0 when using the default route. When adding, for example, a routing entry by ip route
add 192.168.2.0/24 dev eth0, the prefixlen is 24, according to the netmask which was
specified when adding the entry. The prefixlen is set in the check_leaf() method
(net/ipv4/fib_trie.c).

•฀ nh_sel: The nexthop number. When working with one nexthop only, it is 0. When working
with Multipath Routing, there can be more than one nexthop. The nexthop objects are stored
in an array in the routing entry (inside the fib_info object), as discussed in the next section.

•฀ type: The type of the fib_result object is the most important field because it determines in
fact how to handle the packet: whether to forward it to a different machine, deliver it locally,
discard it silently, discard it with replying with an ICMPv4 message, and so on. The type
of the fib_result object is determined according to the packet content (most notably the
destination address) and according to routing rules set by the administrator, routing daemons,
or a Redirect message. You will see how the type of the fib_result object is determined in
the lookup process later in this chapter and in the next. The two most common types of the
fib_result objects are the RTN_UNICAST type, which is set when the packet is for forwarding
via a gateway or a direct route, and the RTN_LOCAL type, which is set when the packet is for
the local host. Other types you will encounter in this book are the RTN_BROADCAST type,
for packets that should be accepted locally as broadcasts, the RTN_MULTICAST type, for
multicast routes, the RTN_UNREACHABLE type, for packets which trigger sending back an
ICMPv4 "Destination Unreachable" message, and more. There are 12 route types in all. For a
complete list of all available route types, see include/uapi/linux/rtnetlink.h.

•฀ fi: A pointer to a fib_info object, which represents a routing entry. The fib_info object
holds a reference to the nexthop (fib_nh). I discuss the FIB info structure in the section “FIB
Info” later in this chapter.

•฀ table: A pointer to the FIB table on which the lookup is done. It is set in the check_leaf()
method (net/ipv4/fib_trie.c).

•฀ fa_head: A pointer to a fib_alias list (a list of fib_alias objects associated with this route);
optimization of routing entries is done when using fib_alias objects, which avoids creating
a separate fib_info object for each routing entry, regardless of the fact that there are other
fib_info objects which are very similar. All FIB aliases are sorted by fa_tos descending and
fib_priority (metric) ascending. Aliases whose fa_tos is 0 are the last and can match any
TOS. I discuss the fib_alias structure in the section “FIB Alias” later in this chapter.

CHAPTER 5 ■ THE IPV4 ROUTING SUBSYSTEM

118

In this section you learned how a lookup in the routing subsystem is performed. You also found out about
important data structures that relate to the routing lookup process, like fib_result and rtable. The next section
discusses how the FIB tables are organized.

FIB Tables
The main data structure of the routing subsystem is the routing table, which is represented by the fib_table
structure. A routing table can be described, in a somewhat simplified way, as a table of entries where each entry
determines which nexthop should be chosen for traffic destined to a subnet (or to a specific IPv4 destination address).
This entry has other parameters, of course, discussed later in this chapter. Each routing entry contains a fib_info
object (include/net/ip_fib.h), which stores the most important routing entry parameters (but not all, as you will see
later in this chapter). The fib_info object is created by the fib_create_info() method (net/ipv4/fib_semantics.c)
and is stored in a hash table named fib_info_hash. When the route uses prefsrc, the fib_info object is added also
to a hash table named fib_info_laddrhash.

There is a global counter of fib_info objects named fib_info_cnt which is incremented when creating a
fib_info object, by the fib_create_info() method, and decremented when freeing a fib_info object, by the
free_fib_info() method. The hash table is dynamically resized when it grows over some threshold. A lookup in
the fib_info_hash hash table is done by the fib_find_info() method (it returns NULL when not finding an entry).
Serializing access to the fib_info members is done by a spinlock named fib_info_lock. Here’s the fib_table
structure:

struct fib_table {
 struct hlist_node tb_hlist;
 u32 tb_id;
 int tb_default;
 int tb_num_default;
 unsigned long tb_data[0];
};

(include/net/ip_fib.h)

•฀ tb_id: The table identifier. For the main table, tb_id is 254 (RT_TABLE_MAIN), and for the
local table, tb_id is 255 (RT_TABLE_LOCAL). I talk about the main table and the local table
soon—for now, just note that when working without Policy Routing, only these two FIB tables,
the main table and the local table, are created in boot.

•฀ tb_num_default: The number of the default routes in the table. The fib_trie_table()
method, which creates a table, initializes tb_num_default to 0. Adding a default route
increments tb_num_default by 1, by the fib_table_insert() method. Deleting a default
route decrements tb_num_default by 1, by the fib_table_delete() method.

•฀ tb_data[0] : A placeholder for a routing entry (trie) object.

This section covered how a FIB table is implemented. Next you will learn about the FIB info, which represents a
single routing entry.

CHAPTER 5 ■ THE IPV4 ROUTING SUBSYSTEM

119

FIB Info
A routing entry is represented by a fib_info structure. It consists of important routing entry parameters, such as
the outgoing network device (fib_dev), the priority (fib_priority), the routing protocol identifier of this route
(fib_protocol), and more. Let’s take a look at the fib_info structure:

struct fib_info {
 struct hlist_node fib_hash;
 struct hlist_node fib_lhash;
 struct net *fib_net;
 int fib_treeref;
 atomic_t fib_clntref;
 unsigned int fib_flags;
 unsigned char fib_dead;
 unsigned char fib_protocol;
 unsigned char fib_scope;
 unsigned char fib_type;
 __be32 fib_prefsrc;
 u32 fib_priority;
 u32 *fib_metrics;
#define fib_mtu fib_metrics[RTAX_MTU-1]
#define fib_window fib_metrics[RTAX_WINDOW-1]
#define fib_rtt fib_metrics[RTAX_RTT-1]
#define fib_advmss fib_metrics[RTAX_ADVMSS-1]
 int fib_nhs;
#ifdef CONFIG_IP_ROUTE_MULTIPATH
 int fib_power;
#endif
 struct rcu_head rcu;
 struct fib_nh fib_nh[0];
#define fib_dev fib_nh[0].nh_dev
};

(include/net/ip_fib.h)

•฀ fib_net: The network namespace the fib_info object belongs to.

•฀ fib_treeref: A reference counter that represents the number of fib_alias objects which
hold a reference to this fib_info object. This reference counter is incremented in the fib_
create_info() method and decremented in the fib_release_info() method. Both methods
are in net/ipv4/fib_semantics.c.

•฀ fib_clntref: A reference counter that is incremented by the fib_create_info() method
(net/ipv4/fib_semantics.c) and decremented by the fib_info_put() method (include/
net/ip_fib.h). If, after decrementing it by 1 in the fib_info_put() method, it reaches zero,
than the associated fib_info object is freed by the free_fib_info() method.

•฀ fib_dead: A flag that indicates whether it is permitted to free the fib_info object with the
free_fib_info() method; fib_dead must be set to 1 before calling the free_fib_info()
method. If the fib_dead flag is not set (its value is 0), then it is considered alive, and trying to
free it with the free_fib_info() method will fail.

CHAPTER 5 ■ THE IPV4 ROUTING SUBSYSTEM

120

•฀ fib_protocol: The routing protocol identifier of this route. When adding a routing rule from
userspace without specifying the routing protocol ID, the fib_protocol is assigned to be
RTPROT_BOOT. The administrator may add a route with the “proto static” modifier, which
indicates that the route was added by an administrator; this can be done, for example, like
this: ip route add proto static 192.168.5.3 via 192.168.2.1. The fib_protocol can be
assigned one of these flags:

RTPROT_UNSPEC: An error value.•฀

RTPROT_REDIRECT: When set, the routing entry was created as a result of receiving an •฀
ICMP Redirect message. The RTPROT_REDIRECT protocol identifier is used only in IPv6.

RTPROT_KERNEL: When set, the routing entry was created by the kernel (for example, •฀
when creating the local IPv4 routing table, explained shortly).

RTPROT_BOOT: When set, the admin added a route without specifying the “proto static” •฀
modifier.

RTPROT_STATIC: Route installed by system administrator.•฀

RTPROT_RA: Don’t misread this— this protocol identifier is not for Router Alert; it is for •฀
RDISC/ND Router Advertisements, and it is used in the kernel by the IPv6 subsystem
only; see: net/ipv6/route.c. I discuss it in Chapter 8.

The routing entry could also be added by userspace routing daemons, like ZEBRA, XORP,
MROUTED, and more. Then it will be assigned the corresponding value from a list of protocol
identifiers (see the RTPROT_XXX definitions in include/uapi/linux/rtnetlink.h). For example,
for the XORP daemon it will be RTPROT_XORP. Note that these flags (like RTPROT_KERNEL or
RTPROT_STATIC) are also used by IPv6, for the parallel field (the rt6i_protocol field in the
rt6_info structure; the rt6_info object is the IPv6 parallel to the rtable object).

•฀ fib_scope: The scope of the destination address. In short, scopes are assigned to addresses
and routes. Scope indicates the distance of the host from other nodes. The ip address show
command shows the scopes of all configured IP addresses on a host. The ip route show
command displays the scopes of all the route entries of the main table. A scope can be one
of these:

host (RT_SCOPE_HOST): The node cannot communicate with the other network nodes. •฀
The loopback address has scope host.

global (RT_SCOPE_UNIVERSE): The address can be used anywhere. This is the most •฀
common case.

link (RT_SCOPE_LINK): This address can be accessed only from directly attached hosts.•฀

site (RT_SCOPE_SITE): This is used in IPv6 only (I discuss it in Chapter 8).•฀

nowhere (RT_SCOPE_NOWHERE): Destination doesn't exist.•฀

When a route is added by an administrator without specifying a scope, the fib_scope field is
assigned a value according to these rules:

global scope (RT_SCOPE_UNIVERSE): For all gatewayed unicast routes.•฀

scope link (RT_SCOPE_LINK): For direct unicast and broadcast routes.•฀

scope host (RT_SCOPE_HOST): For local routes.•฀

CHAPTER 5 ■ THE IPV4 ROUTING SUBSYSTEM

121

•฀ fib_type: The type of the route. The fib_type field was added to the fib_info structure as a
key to make sure there is differentiation among fib_info objects by their type. The fib_type
field was added to the fib_info struct in kernel 3.7. Originally this type was stored only
in the fa_type field of the FIB alias object (fib_alias). You can add a rule to block traffic
according to a specified category, for example, by: ip route add prohibit 192.168.1.17
from 192.168.2.103.

The •฀ fib_type of the generated fib_info object is RTN_PROHIBIT.

Sending traffic from 192.168.2.103 to 192.168.1.17 results in an ICMPv4 message of •฀
“Packet Filtered” (ICMP_PKT_FILTERED).

•฀ fib_prefsrc: There are cases when you want to provide a specific source address to the
lookup key. This is done by setting fib_prefsrc.

•฀ fib_priority: The priority of the route, by default, is 0, which is the highest priority. The
higher the value of the priority, the lower the priority is. For example, a priority of 3 is lower
than a priority of 0, which is the highest priority. You can configure it, for example, with the ip
command, in one of the following ways:

•฀ ip route add 192.168.1.10 via 192.168.2.1 metric 5

•฀ ip route add 192.168.1.10 via 192.168.2.1 priority 5

•฀ ip route add 192.168.1.10 via 192.168.2.1 preference 5

Each of these three commands sets the fib_priority to 5; there is no difference at all between
them. Moreover, the metric parameter of the ip route command is not related in any way to
the fib_metrics field of the fib_info structure.

•฀ fib_mtu, fib_window, fib_rtt, and fib_advmss simply give more convenient names to
commonly used elements of the fib_metrics array.

fib_metrics is an array of 15 (RTAX_MAX) elements consisting of various metrics. It is
initialized to be dst_default_metrics in net/core/dst.c. Many metrics are related to the
TCP protocol, such as the Initial Congestion Window (initcwnd) metric. Table 5-1, at the
end of the chapter shows all the available metrics and displays whether each is a TCP-related
metric or not.

From userspace, the TCPv4 initcwnd metric can be set thus, for example:

ip route add 192.168.1.0/24 initcwnd 35

There are metrics which are not TCP specific—for example, the mtu metric, which can be set
from userspace like this:

ip route add 192.168.1.0/24 mtu 800

or like this:

ip route add 192.168.1.0/24 mtu lock 800

CHAPTER 5 ■ THE IPV4 ROUTING SUBSYSTEM

122

The difference between the two commands is that when specifying the modifier lock, no path
MTU discovery will be tried. When not specifying the modifier lock, the MTU may be updated
by the kernel due to Path MTU discovery. For more about how this is implemented, see the
__ip_rt_update_pmtu() method, in net/ipv4/route.c:

static void __ip_rt_update_pmtu(struct rtable *rt, struct flowi4 *fl4, u32 mtu)
{

Avoiding Path MTU update when specifying the mtu lock modifier is achieved by calling the
dst_metric_locked() method :

. . .
if (dst_metric_locked(dst, RTAX_MTU))
 return;
. . .
}

•฀ fib_nhs: The number of nexthops. When Multipath Routing (CONFIG_IP_ROUTE_MULTIPATH)
is not set, it cannot be more than 1. The Multipath Routing feature sets multiple alternative paths
for a route, possibly assigning different weights to these paths. This feature provides benefits such
as fault tolerance, increased bandwidth, or improved security (I discuss it in Chapter 6).

•฀ fib_dev: The network device that will transmit the packet to the nexthop.

•฀ fib_nh[0]: The fib_nh[0] member represents the nexthop. When working with Multipath
Routing, you can define more than one nexthop in a route, and in this case there is an array
of nexthops. Defining two nexthop nodes can be done like this, for example: ip route add
default scope global nexthop dev eth0 nexthop dev eth1.

As mentioned, when the fib_type is RTN_PROHIBIT, an ICMPv4 message of “Packet Filtered” (ICMP_PKT_
FILTERED) is sent. How is it implemented? An array named fib_props consists of 12 (RTN_MAX) elements (defined
in net/ipv4/fib_semantics.c). The index of this array is the route type. The available route types, such as RTN_
PROHIBIT or RTN_UNICAST, can be found in include/uapi/linux/rtnetlink.h. Each element in the array is an
instance of struct fib_prop; the fib_prop structure is a very simple structure:

struct fib_prop {
 int error;
 u8 scope;
 };

(net/ipv4/fib_lookup.h)

For every route type, the corresponding fib_prop object contains the error and the scope for that route. For example,
for the RTN_UNICAST route type (gateway or direct route), which is a very common route, the error value is 0, which
means that there is no error, and the scope is RT_SCOPE_UNIVERSE. For the RTN_PROHIBIT route type (a rule which a
system administrator configures in order to block traffic), the error is –EACCES, and the scope is RT_SCOPE_UNIVERSE:

const struct fib_prop fib_props[RTN_MAX + 1] = {
 . . .
 [RTN_PROHIBIT] = {
 .error = -EACCES,
 .scope = RT_SCOPE_UNIVERSE,
 },

. . .

CHAPTER 5 ■ THE IPV4 ROUTING SUBSYSTEM

123

Table 5-2 at the end of this chapter shows all available route types, their error codes, and their scopes.
When you configure a rule like the one mentioned earlier, by ip route add prohibit 192.168.1.17 from

192.168.2.103—and when a packet is sent from 192.168.2.103 to 192.168.1.17, what happens is the following: a
lookup in the routing tables is performed in the Rx path. When a corresponding entry, which is in fact a leaf in the FIB
TRIE, is found, the check_leaf() method is invoked. This method accesses the fib_props array with the route type of
the packet as an index (fa->fa_type):

static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
 t_key key, const struct flowi4 *flp,
 struct fib_result *res, int fib_flags)
{
 . . .
 fib_alias_accessed(fa);
 err = fib_props[fa->fa_type].error;
 if (err) {
 . . .
 return err;
 }
 . . .

Eventually, the fib_lookup() method, which initiated the lookup in the IPv4 routing subsystem, returns an
error of –EACCES (in our case). It propagates all the way back from check_leaf() via fib_table_lookup() and so on
until it returns to the method which triggered this chain, namely the fib_lookup() method. When the fib_lookup()
method returns an error in the Rx path, it is handled by the ip_error() method. According to the error, an action is
taken. In the case of –EACCES, an ICMPv4 of destination unreachable with code of Packet Filtered
(ICMP_PKT_FILTERED) is sent back, and the packet is dropped.

This section covered the FIB info, which represents a single routing entry. The next section discusses caching in
the IPv4 routing subsystem (not to be confused with the IPv4 routing cache, which was removed from the network
stack, and is discussed in the “IPv4 Routing Cache” section at the end of this chapter).

Caching
Caching the results of a routing lookup is an optimization technique that improves the performance of the routing
subsystem. The results of a routing lookup are usually cached in the nexthop (fib_nh) object; when the packet is not
a unicast packet or realms are used (the packet itag is not 0), the results are not cached in the nexthop. The reason is
that if all types of packets are cached, then the same nexthop can be used by different kinds of routes—that should be
avoided. There are some minor exceptions to this which I do not discuss in this chapter. Caching in the Rx and the Tx
path are performed as follows:

In the Rx path, caching the •฀ fib_result object in the nexthop (fib_nh) object is done by
setting the nh_rth_input field of the nexthop (fib_nh) object.

In the Tx path, caching the •฀ fib_result object in the nexthop (fib_nh) object is done by
setting the nh_pcpu_rth_output field of the nexthop (fib_nh) object.

Both •฀ nh_rth_input and nh_pcpu_rth_output are instances of the rtable structure.

Caching the •฀ fib_result is done by the rt_cache_route() method both in the Rx and the Tx
paths (net/ipv4/route.c).

Caching of Path MTU and ICMPv4 redirects is done with FIB exceptions.•฀

CHAPTER 5 ■ THE IPV4 ROUTING SUBSYSTEM

124

For performance, the nh_pcpu_rth_output is a per-CPU variable, meaning there is a copy for each CPU of the
output dst entry. Caching is used almost always. The few exceptions are when an ICMPv4 Redirect message is sent,
or itag (tclassid) is set, or there is not enough memory.

In this section you have learned how caching is done using the nexthop object. The next section discusses the
fib_nh structure, which represents the nexthop, and the FIB nexthop exceptions.

Nexthop (fib_nh)
The fib_nh structure represents the nexthop. It consists of information such as the outgoing nexthop network device
(nh_dev), outgoing nexthop interface index (nh_oif), the scope (nh_scope), and more. Let’s take a look:

struct fib_nh {
 struct net_device *nh_dev;
 struct hlist_node nh_hash;
 struct fib_info *nh_parent;
 unsigned int nh_flags;
 unsigned char nh_scope;
#ifdef CONFIG_IP_ROUTE_MULTIPATH
 int nh_weight;
 int nh_power;
#endif
#ifdef CONFIG_IP_ROUTE_CLASSID
 __u32 nh_tclassid;
#endif
 int nh_oif;
 __be32 nh_gw;
 __be32 nh_saddr;
 int nh_saddr_genid;
 struct rtable __rcu * __percpu *nh_pcpu_rth_output;
 struct rtable __rcu *nh_rth_input;
 struct fnhe_hash_bucket *nh_exceptions;
};

(include/net/ip_fib.h)

The nh_dev field represents the network device (net_device object) on which traffic to the nexthop will be
transmitted. When a network device associated with one or more routes is disabled, a NETDEV_DOWN notification
is sent. The FIB callback for handling this event is the fib_netdev_event() method; it is the callback of the
fib_netdev_notifier notifier object, which is registered in the ip_fib_init() method by calling the
register_netdevice_notifier() method (notification chains are discussed in Chapter 14). The fib_netdev_event()
method calls the fib_disable_ip() method upon receiving a NETDEV_DOWN notification. In the fib_disable_ip()
method, the following steps are performed:

First, the •฀ fib_sync_down_dev() method is called (net/ipv4/fib_semantics.c). In the
fib_sync_down_dev() method, the RTNH_F_DEAD flag of the nexthop flags (nh_flags) is set
and the FIB info flags (fib_flags) is set.

The routes are flushed by the •฀ fib_flush() method.

The •฀ rt_cache_flush() method and the arp_ifdown() method are invoked. The arp_ifdown()
method is not on any notifier chain.

CHAPTER 5 ■ THE IPV4 ROUTING SUBSYSTEM

125

FIB Nexthop Exceptions

FIB nexthop exceptions were added in kernel 3.6 to handle cases when a routing entry is changed not as a result of a
userspace action, but as a result of an ICMPv4 Redirect message or as a result of Path MTU discovery. The hash key
is the destination address. The FIB nexthop exceptions are based on a 2048 entry hash table; reclaiming (freeing
hash entries) starts at a chain depth of 5. Each nexthop object (fib_nh) has a FIB nexthop exceptions hash table,
nh_exceptions (an instance of the fnhe_hash_bucket structure). Let's take a look at the fib_nh_exception structure:

struct fib_nh_exception {
 struct fib_nh_exception __rcu *fnhe_next;
 __be32 fnhe_daddr;
 u32 fnhe_pmtu;
 __be32 fnhe_gw;
 unsigned long fnhe_expires;
 struct rtable __rcu *fnhe_rth;
 unsigned long fnhe_stamp;
};

(include/net/ip_fib.h)

The fib_nh_exception objects are created by the update_or_create_fnhe() method (net/ipv4/route.c).
Where are FIB nexthop exceptions generated? The first case is when receiving an ICMPv4 Redirect message
(“Redirect to Host”) in the __ip_do_redirect() method. The “Redirect to Host” message includes a new gateway.
The fnhe_gw field of the fib_nh_exception is set to be the new gateway when creating the FIB nexthop exception
object (in the update_or_create_fnhe() method):

static void __ip_do_redirect(struct rtable *rt, struct sk_buff *skb, struct flowi4 *fl4,
 bool kill_route)
{
 ...
 __be32 new_gw = icmp_hdr(skb)->un.gateway;
 ...
 update_or_create_fnhe(nh, fl4->daddr, new_gw, 0, 0);
 ...

}

The second case of generating FIB nexthop exceptions is when the Path MTU has changed, in the __ip_rt_
update_pmtu() method. In such a case, the fnhe_pmtu field of the fib_nh_exception object is set to be the new MTU
when creating the FIB nexthop exception object (in the update_or_create_fnhe() method). PMTU value is expired if
it was not updated in the last 10 minutes (ip_rt_mtu_expires). This period is checked on every dst_mtu() call via the
ipv4_mtu() method, which is a dst->ops->mtu handler. The ip_rt_mtu_expires, which is by default 600 seconds, can
be configured via the procfs entry /proc/sys/net/ipv4/route/mtu_expires:

static void __ip_rt_update_pmtu(struct rtable *rt, struct flowi4 *fl4, u32 mtu)
{
 . . .
 if (fib_lookup(dev_net(dst->dev), fl4, &res) == 0) {
 struct fib_nh *nh = &FIB_RES_NH(res);

 update_or_create_fnhe(nh, fl4->daddr, 0, mtu,
 jiffies + ip_rt_mtu_expires);
 }
 . . .
}

CHAPTER 5 ■ THE IPV4 ROUTING SUBSYSTEM

126

Note ■ FIB nexthop exceptions are used in the Tx path. Starting with Linux 3.11, they are also used in the Rx path.

As a result, instead of fnhe_rth, there are fnhe_rth_input and fnhe_rth_output.

Since kernel 2.4, Policy Routing is supported. With Policy Routing, the routing of a packet depends not only on
the destination address, but on several other factors, such as the source address or the TOS. The system administrator
can add up to 255 routing tables.

Policy Routing
When working without Policy Routing (CONFIG_IP_MULTIPLE_TABLES is not set), two routing tables are created:
the local table and the main table. The main table id is 254 (RT_TABLE_MAIN), and the local table id is 255
(RT_TABLE_LOCAL). The local table contains routing entries of local addresses. These routing entries can be added
to the local table only by the kernel. Adding routing entries to the main table (RT_TABLE_MAIN) is done by a system
administrator (via ip route add, for example). These tables are created by the fib4_rules_init() method of
net/ipv4/fib_frontend.c. These tables were called ip_fib_local_table and ip_fib_main_table in kernels prior
to 2.6.25, but they were removed in favor of using unified access to the routing tables with the fib_get_table()
method with appropriate argument. By unified access, I mean that access to the routing tables is done in the same
way, with the fib_get_table() method, both when Policy Routing support is enabled and when it is disabled. The
fib_get_table() method gets only two arguments: the network namespace and the table id. Note that there is a
different method with the same name, fib4_rules_init(), for the Policy Routing case, in net/ipv4/fib_rules.c,
which is invoked when working with Policy Routing support. When working with Policy Routing support
(CONFIG_IP_MULTIPLE_TABLES is set), there are three initial tables (local, main, and default), and there can
be up to 255 routing tables. I talk more about Policy Routing in Chapter 6. Access to the main routing table can be
done as follows:

By a system administrator command (using •฀ ip route or route):

Adding a route by •฀ ip route add is implemented by sending RTM_NEWROUTE message
from userspace, which is handled by the inet_rtm_newroute() method. Note that a route
is not necessarily always a rule that permits traffic. You can also add a route that blocks
traffic, for example, by ip route add prohibit 192.168.1.17 from 192.168.2.103.
As a result of applying this rule, all packets sent from 192.168.2.103 to 192.168.1.17 will be
blocked.

Deleting a route by •฀ ip route del is implemented by sending RTM_DELROUTE message
from userspace, which is handled by the inet_rtm_delroute() method.

Dumping a routing table by •฀ ip route show is implemented by sending RTM_GETROUTE
message from userspace, which is handled by the inet_dump_fib() method.

Note that ip route show displays the main table. For displaying the local table, you should
run ip route show table local.

Adding a route by •฀ route add is implemented by sending SIOCADDRT IOCTL, which is
handled by the ip_rt_ioctl() method (net/ipv4/fib_frontend.c).

Deleting a route by •฀ route del is implemented by sending SIOCDELRT IOCTL, which is
handled by the ip_rt_ioctl() method (net/ipv4/fib_frontend.c).

CHAPTER 5 ■ THE IPV4 ROUTING SUBSYSTEM

127

By userspace routing daemons which implement routing protocols like BGP (Border Gateway •฀
Protocol), EGP (Exterior Gateway Protocol), OSPF (Open Shortest Path First), or others. These
routing daemons run on core routers, which operate in the Internet backbone, and can handle
hundreds of thousands of routes.

I should mention here that routes that were changed as a result of an ICMPv4 REDIRECT message or as a result of
Path MTU discovery are cached in the nexthop exception table, discussed shortly. The next section describes the FIB
alias, which helps in routing optimizations.

FIB Alias (fib_alias)
There are cases when several routing entries to the same destination address or to the same subnet are created. These
routing entries differ only in the value of their TOS. Instead of creating a fib_info for each such route, a fib_alias
object is created. A fib_alias is smaller, which reduces memory consumption. Here is a simple example of creating 3
fib_alias objects:

ip route add 192.168.1.10 via 192.168.2.1 tos 0x2
ip route add 192.168.1.10 via 192.168.2.1 tos 0x4
ip route add 192.168.1.10 via 192.168.2.1 tos 0x6

Let’s take a look at the fib_alias structure definition:

struct fib_alias {
 struct list_head fa_list;
 struct fib_info *fa_info;
 u8 fa_tos;
 u8 fa_type;
 u8 fa_state;
 struct rcu_head rcu;
};

(net/ipv4/fib_lookup.h)

Note that there was also a scope field in the fib_alias structure (fa_scope), but it was moved in kernel 2.6.39 to
the fib_info structure.

The fib_alias object stores routes to the same subnet but with different parameters. You can have one fib_info
object which will be shared by many fib_alias objects. The fa_info pointer in all these fib_alias objects, in this
case, will point to the same shared fib_info object. In Figure 5-3, you can see one fib_info object which is shared by
three fib_alias objects, each with a different fa_tos. Note that the reference counter value of the fib_info object is
3 (fib_treeref).

CHAPTER 5 ■ THE IPV4 ROUTING SUBSYSTEM

128

Let’s take a look at what happens when you try to add a key for which a fib_node was already added before
(as in the earlier example with the three TOS values 0x2, 0x4, and 0x6); suppose you had created the first rule with TOS
of 0x2, and now you create the second rule, with TOS of 0x4.

A fib_alias object is created by the fib_table_insert() method, which is the method that handles adding a
routing entry:

int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
 {
 struct trie *t = (struct trie *) tb->tb_data;
 struct fib_alias *fa, *new_fa;
 struct list_head *fa_head = NULL;
 struct fib_info *fi;
 . . .

Figure 5-3. A fib_info which is shared by three fib_alias objects. Each fib_alias object has a different fa_tos value

CHAPTER 5 ■ THE IPV4 ROUTING SUBSYSTEM

129

First, a fib_info object is created. Note that in the fib_create_info() method, after allocating and creating a
fib_info object, a lookup is performed to check whether a similar object already exists by calling the fib_find_info()
method. If such an object exists, it will be freed, and the reference counter of the object that was found (ofi in the code
snippet you will shortly see) will be incremented by 1:

fi = fib_create_info(cfg);

Let’s take a look at the code snippet in the fib_create_info() method mentioned earlier; for creating the second
TOS rule, the fib_info object of the first rule and the fib_info object of the second rule are identical. You should
remember that the TOS field exists in the fib_alias object but not in the fib_info object:

struct fib_info *fib_create_info(struct fib_config *cfg)
{
 struct fib_info *fi = NULL;
 struct fib_info *ofi;
 . . .
 fi = kzalloc(sizeof(*fi)+nhs*sizeof(struct fib_nh), GFP_KERNEL);
 if (fi == NULL)
 goto failure;
 . . .
link_it:
 ofi = fib_find_info(fi);

If a similar object is found, free the fib_info object and increment the fib_treeref reference count:

 if (ofi) {
 fi->fib_dead = 1;
 free_fib_info(fi);
 ofi->fib_treeref++;
 return ofi;
 }
 . . .
}

Now a check is performed to find out whether there is an alias to the fib_info object; in this case, there will be
no alias because the TOS of the second rule is different than the TOS of the first rule:

 l = fib_find_node(t, key);
 fa = NULL;

 if (l) {
 fa_head = get_fa_head(l, plen);
 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
 }

if (fa && fa->fa_tos == tos &&
 fa->fa_info->fib_priority == fi->fib_priority) {
 . . .
 }

CHAPTER 5 ■ THE IPV4 ROUTING SUBSYSTEM

130

Now a fib_alias is created, and its fa_info pointer is assigned to point the fib_info of the first rule that was
created:

new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
if (new_fa == NULL)
 goto out;

new_fa->fa_info = fi;
 . . .

Now that I have covered the FIB Alias, you are ready to look at the ICMPv4 redirect message, which is sent when
there is a suboptimal route.

ICMPv4 Redirect Message
There are cases when a routing entry is suboptimal. In such cases, an ICMPv4 redirect message is sent. The main
criterion for a suboptimal entry is that the input device and the output device are the same. But there are more
conditions that should be fulfilled so that an ICMPv4 redirect message is sent, as you will see in this section. There are
four codes of ICMPv4 redirect message:

ICMP_REDIR_NET: Redirect Net•฀

ICMP_REDIR_HOST: Redirect Host•฀

ICMP_REDIR_NETTOS: Redirect Net for TOS•฀

ICMP_REDIR_HOSTTOS: Redirect Host for TOS•฀

Figure 5-4 shows a setup where there is a suboptimal route. There are three machines in this setup, all on the
same subnet (192.168.2.0/24) and all connected via a gateway (192.168.2.1). The AMD server (192.168.2.200) added
the Windows server (192.168.2.10) as a gateway for accessing 192.168.2.7 (the laptop) by ip route add 192.168.2.7
via 192.168.2.10. The AMD server sends traffic to the laptop, for example, by ping 192.168.2.7. Because the
default gateway is 192.168.2.10, the traffic is sent to 192.168.2.10. The Windows server detects that this is a
suboptimal route, because the AMD server could send directly to 192.168.2.7, and sends back to the AMD server an
ICMPv4 redirect message with ICMP_REDIR_HOST code.

Now that you have a better understanding of redirects, let’s look at how an ICMPv4 message is generated.

Figure 5-4. Redirect to Host (ICMP_REDIR_HOST), a simple setup

CHAPTER 5 ■ THE IPV4 ROUTING SUBSYSTEM

131

Generating an ICMPv4 Redirect Message
An ICMPv4 Redirect message is sent when there is some suboptimal route. The most notable condition for a
suboptimal route is that the input device and the output device are the same, but there are some more conditions
which should be met. Generating an ICMPv4 Redirect message is done in two phases:

In the •฀ __mkroute_input() method: Here the RTCF_DOREDIRECT flag is set if needed.

In the •฀ ip_forward() method: Here the ICMPv4 Redirect message is actually sent by calling the
ip_rt_send_redirect() method.

static int __mkroute_input(struct sk_buff *skb,
 const struct fib_result *res,
 struct in_device *in_dev,
 __be32 daddr, __be32 saddr, u32 tos)
{
 struct rtable *rth;
 int err;
 struct in_device *out_dev;
 unsigned int flags = 0;
 bool do_cache;

All of the following conditions should be sustained so that the RTCF_DOREDIRECT flag is set:

The input device and the output device are the same.•฀

The •฀ procfs entry, /proc/sys/net/ipv4/conf/<deviceName>/send_redirects, is set.

Either this outgoing device is a shared media or the source address (•฀ saddr) and the nexthop
gateway address (nh_gw) are on the same subnet:

if (out_dev == in_dev && err && IN_DEV_TX_REDIRECTS(out_dev) &&
 (IN_DEV_SHARED_MEDIA(out_dev) ||
 inet_addr_onlink(out_dev, saddr, FIB_RES_GW(*res)))) {

 flags |= RTCF_DOREDIRECT;
 do_cache = false;
}
 . . .

Setting the rtable object flags is done by:

 rth->rt_flags = flags;
 . . .

}

Sending the ICMPv4 Redirect message is done in the second phase, by the ip_forward() method:

int ip_forward(struct sk_buff *skb)
{
 struct iphdr *iph; /* Our header */
 struct rtable *rt; /* Route we use */
 struct ip_options *opt = &(IPCB(skb)->opt);

CHAPTER 5 ■ THE IPV4 ROUTING SUBSYSTEM

132

Next a check is performed to see whether the RTCF_DOREDIRECT flag is set, whether an IP option of
strict route does not exist (see chapter 4), and whether it is not an IPsec packet. (With IPsec tunnels, the input
device of the tunneled packet can be the same as the decapsulated packet outgoing device; see
http://lists.openwall.net/netdev/2007/08/24/29):

if (rt->rt_flags&RTCF_DOREDIRECT && !opt->srr && !skb_sec_path(skb))
 ip_rt_send_redirect(skb);

In the ip_rt_send_redirect() method, the ICMPv4 Redirect message is actually sent. The third parameter is the
IP address of the advised new gateway, which will be 192.168.2.7 in this case (The address of the laptop):

void ip_rt_send_redirect(struct sk_buff *skb)
 {
 . . .
 icmp_send(skb, ICMP_REDIRECT, ICMP_REDIR_HOST,
 rt_nexthop(rt, ip_hdr(skb)->daddr))
 . . .
 }

(net/ipv4/route.c)

Receiving an ICMPv4 Redirect Message
For an ICMPv4 Redirect message to be processed, it should pass some sanity checks. Handling an ICMPv4 Redirect
message is done by the __ip_do_redirect() method:

static void __ip_do_redirect(struct rtable *rt, struct sk_buff *skb, struct flowi4
 *fl4,bool kill_route)
{
 __be32 new_gw = icmp_hdr(skb)->un.gateway;
 __be32 old_gw = ip_hdr(skb)->saddr;
 struct net_device *dev = skb->dev;
 struct in_device *in_dev;
 struct fib_result res;
 struct neighbour *n;
 struct net *net;
 . . .

Various checks are performed, such as that the network device is set to accept redirects. The redirect is rejected if
necessary:

if (rt->rt_gateway != old_gw)
 return;

in_dev = __in_dev_get_rcu(dev);
if (!in_dev)
 return;

net = dev_net(dev);
if (new_gw == old_gw || !IN_DEV_RX_REDIRECTS(in_dev) ||
 ipv4_is_multicast(new_gw) || ipv4_is_lbcast(new_gw) ||

http://lists.openwall.net/netdev/2007/08/24/29
http://lists.openwall.net/netdev/2007/08/24/29

CHAPTER 5 ■ THE IPV4 ROUTING SUBSYSTEM

133

 ipv4_is_zeronet(new_gw))
 goto reject_redirect;

if (!IN_DEV_SHARED_MEDIA(in_dev)) {
 if (!inet_addr_onlink(in_dev, new_gw, old_gw))
 goto reject_redirect;
 if (IN_DEV_SEC_REDIRECTS(in_dev) && ip_fib_check_default(new_gw, dev))
 goto reject_redirect;
} else {
 if (inet_addr_type(net, new_gw) != RTN_UNICAST)
 goto reject_redirect;
}

A lookup in the neighboring subsystem is performed; the key to the lookup is the address of the advised gateway,
new_gw, which was extracted from the ICMPv4 message in the beginning of this method:

n = ipv4_neigh_lookup(&rt->dst, NULL, &new_gw);
if (n) {
 if (!(n->nud_state & NUD_VALID)) {
 neigh_event_send(n, NULL);
 } else {
 if (fib_lookup(net, fl4, &res) == 0) {
 struct fib_nh *nh = &FIB_RES_NH(res);

Create / update a FIB nexthop exception, specifying the IP address of an advised gateway (new_gw):

 update_or_create_fnhe(nh, fl4->daddr, new_gw,
 0, 0);
 }
 if (kill_route)
 rt->dst.obsolete = DST_OBSOLETE_KILL;
 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, n);
 }
 neigh_release(n);
 }
 return;

reject_redirect:
 . . .

(net/ipv4/route.c)

Now that we’ve covered how a received ICMPv4 message is handled, we can next tackle the IPv4 routing cache
and the reasons for its removal.

IPv4 Routing Cache
In kernels prior to 3.6, there was an IPv4 routing cache with a garbage collector. The IPv4 routing cache was removed
in kernel 3.6 (around July 2012). The FIB TRIE / FIB hash was a choice in the kernel for years, but not as the default.
Having the FIB TRIE made it possible to remove the IPv4 routing cache, as it had Denial of Service (DoS) issues. FIB
TRIE (also known as LC-trie) is the longest matching prefix lookup algorithm that performs better than FIB hash for
large routing tables. It consumes more memory and is more complex, but since it performs better, it made the removal

CHAPTER 5 ■ THE IPV4 ROUTING SUBSYSTEM

134

of the routing cache feasible. The FIB TRIE code was in the kernel for a long time before it was merged, but it was not
the default. The main reason for the removal of the IPv4 routing cache was that launching DoS attacks against it was
easy because the IPv4 routing cache created a cache entry for each unique flow. Basically that meant that by sending
packets to random destinations, you could generate an unlimited amount of routing cache entries.

Merging the FIB TRIE entailed the removal of the routing cache and of some of the cumbersome FIB hash tables
and of the routing cache garbage collector methods. This chapter discusses the routing cache very briefly. Because
the novice reader may wonder what it is needed for, note that in the Linux-based software industry, in commercial
distributions like RedHat Enterprise, the kernels are fully maintained and fully supported for a very long period of
time (RedHat, for example, gives support for its distributions for up to seven years). So it is very likely that some
readers will be involved in projects based on kernels prior to 3.6, where you will find the routing cache and the FIB
hash-based routing tables. Delving into the theory and implementation details of the FIB TRIE data structure is
beyond the scope of this book. To learn more, I recommend the article “TRASH—A dynamic LC-trie and hash data
structure” by Robert Olsson and Stefan Nilsson, www.nada.kth.se/~snilsson/publications/TRASH/trash.pdf.

Note that with the IPv4 routing cache implementation, there is a single cache, regardless of how many routing
tables are used (there can be up to 255 routing tables when using Policy Routing). Note that there was also support
for IPv4 Multipath Routing cache, but it was removed in kernel 2.6.23, in 2007. In fact, it never did work very well and
never got out of the experimental state.

For kernels prior to the 3.6 kernel, where the FIB TRIE is not yet merged, the lookup in the IPv4 routing
subsystem was different: access to routing tables was preceded by access to the routing cache, the tables were
organized differently, and there was a routing cache garbage collector, which was both asynchronous (periodic timer)
and synchronous (activated under specific conditions, for example when the number of the cache entries exceeded
some threshold). The cache was basically a big hash with the IP flow source address, destination address, and TOS as
a key, associated with all flow-specific information like neighbor entry, PMTU, redirect, TCPMSS info, and so on. The
benefit here is that cached entries were fast to look up and contained all the information needed by higher layers.

Note ■ The following two sections (“Rx Path” and “Tx Path”) refer to the 2.6.38 kernel.

Rx Path

In the Rx path, first the ip_route_input_common() method is invoked. This method performs a lookup in the IPv4
routing cache, which is much quicker than the lookup in the IPv4 routing tables. Lookup in these routing tables is based
on the Longest Prefix Match (LPM) search algorithm. With the LPM search, the most specific table entry—the one
with the highest subnet mask—is called the Longest Prefix Match. In case the lookup in the routing cache fails (“cache
miss”), a lookup in the routing tables is being performed by calling the ip_route_input_slow() method. This method
calls the fib_lookup() method to perform the actual lookup. Upon success, it calls the ip_mkroute_input() method
which (among other actions) inserts the routing entry into the routing cache by calling the rt_intern_hash() method.

Tx Path

In the Tx path, first the ip_route_output_key() method is invoked. This method performs a lookup in the IPv4 routing
cache. In case of a cache miss, it calls the ip_route_output_slow() method, which calls the fib_lookup() method
to perform a lookup in the routing subsystem. Subsequently, upon success, it calls the ip_mkroute_output() method
which (among other actions) inserts the routing entry into the routing cache by calling the rt_intern_hash() method.

http://www.nada.kth.se/~snilsson/publications/TRASH/trash.pdf

CHAPTER 5 ■ THE IPV4 ROUTING SUBSYSTEM

135

Summary
This chapter covered various topics of the IPv4 routing subsystem. The routing subsystem is essential for handling
both incoming and outgoing packets. You learned about various topics like forwarding, lookup in the routing
subsystem, organization of the FIB tables, Policy Routing and the routing subsystem, and ICMPv4 Redirect message.
You also learned about optimization which is gained with the FIB alias and the fact that the routing cache was
removed, and why. The next chapter covers advanced topics of the IPv4 routing subsystem.

Quick Reference
I conclude this chapter with a short list of important methods, macros, and tables of the IPv4 routing subsystem, along
with a short explanation about routing flags.

Note ■ The IPv4 routing subsystem is implemented in these modules under net/ipv4: fib_frontend.c, fib_trie.c,

fib_semantics.c, route.c.

The fib_rules.c module implements Policy Routing and is compiled only when CONFIG_IP_MULTIPLE_TABLES is set.

Among the most important header files are fib_lookup.h, include/net/ip_fib.h, and include/net/route.h.

The destination cache (dst) implementation is in net/core/dst.c and in include/net/dst.h.

CONFIG_IP_ROUTE_MULTIPATH should be set for Multipath Routing Support.

Methods
This section lists the methods that were mentioned in this chapter.

int fib_table_insert(struct fib_table *tb, struct fib_config *cfg);

This method inserts an IPv4 routing entry to the specified FIB table (fib_table object), based on the specified
fib_config object.

int fib_table_delete(struct fib_table *tb, struct fib_config *cfg);

This method deletes an IPv4 routing entry from the specified FIB table (fib_table object), based on the specified
fib_config object.

struct fib_info *fib_create_info(struct fib_config *cfg);

This method creates a fib_info object derived from the specified fib_config object.

void free_fib_info(struct fib_info *fi);

This method frees a fib_info object in condition that it is not alive (the fib_dead flag is not 0) and decrements the
global fib_info objects counter (fib_info_cnt).

CHAPTER 5 ■ THE IPV4 ROUTING SUBSYSTEM

136

void fib_alias_accessed(struct fib_alias *fa);

This method sets the fa_state flag of the specified fib_alias to be FA_S_ACCESSED. Note that the only fa_state
flag is FA_S_ACCESSED.

void ip_rt_send_redirect(struct sk_buff *skb);

This method sends an ICMPV4 Redirect message, as a response to a suboptimal path.

void __ip_do_redirect(struct rtable *rt, struct sk_buff *skb, struct flowi4*fl4, bool

kill_route);

This method handles receiving an ICMPv4 Redirect message.

void update_or_create_fnhe(struct fib_nh *nh, __be32 daddr, __be32 gw, u32

pmtu, unsigned long expires);

This method creates a FIB nexthop exception table (fib_nh_exception) in the specified nexthop object (fib_nh), if it
does not already exist, and initializes it. It is invoked when there should be a route update due to ICMPv4 redirect or
due to PMTU discovery.

u32 dst_metric(const struct dst_entry *dst, int metric);

This method returns a metric of the specified dst object.

struct fib_table *fib_trie_table(u32 id);

This method allocates and initializes a FIB TRIE table.

struct leaf *fib_find_node(struct trie *t, u32 key);

This method performs a TRIE lookup with the specified key. It returns a leaf object upon success, or NULL in case of
failure.

Macros
This section is a list of macros of the IPv4 routing subsystem, some of which were mentioned in this chapter.

FIB_RES_GW()

This macro returns the nh_gw field (nexthop gateway address) associated with the specified fib_result object.

FIB_RES_DEV()

This macro returns the nh_dev field (Next hop net_device object) associated with the specified fib_result object.

CHAPTER 5 ■ THE IPV4 ROUTING SUBSYSTEM

137

FIB_RES_OIF()

This macro returns the nh_oif field (nexthop output interface index) associated with the specified fib_result object.

FIB_RES_NH()

This macro returns the nexthop (fib_nh object) of the fib_info of the specified fib_result object. When Multipath
Routing is set, you can have multiple nexthops; the value of nh_sel field of the specified fib_result object is taken
into account in this case, as an index to the array of the nexthops which is embedded in the fib_info object.

(include/net/ip_fib.h)

IN_DEV_FORWARD()

This macro checks whether the specified network device (in_device object) supports IPv4 forwarding.

IN_DEV_RX_REDIRECTS()

This macro checks whether the specified network device (in_device object) supports accepting ICMPv4 Redirects.

IN_DEV_TX_REDIRECTS()

This macro checks whether the specified network device (in_device object) supports sending ICMPv4 Redirects.

IS_LEAF()

This macro checks whether the specified tree node is a leaf.

IS_TNODE()

This macro checks whether the specified tree node is an internal node (trie node or tnode).

change_nexthops()

This macro iterates over the nexthops of the specified fib_info object (net/ipv4/fib_semantics.c).

Tables
There are 15 (RTAX_MAX) metrics for routes. Some of them are TCP related, and some are general. Table 5-1 shows
which of these metrics are related to TCP.

CHAPTER 5 ■ THE IPV4 ROUTING SUBSYSTEM

138

(include/uapi/linux/rtnetlink.h)

Table 5-2 shows the error value and the scope of all the route types.

Table 5-1. Route Metrics

Linux Symbol TCP Metric (Y/N)

RTAX_UNSPEC N

RTAX_LOCK N

RTAX_MTU N

RTAX_WINDOW Y

RTAX_RTT Y

RTAX_RTTVAR Y

RTAX_SSTHRESH Y

RTAX_CWND Y

RTAX_ADVMSS Y

RTAX_REORDERING Y

RTAX_HOPLIMIT N

RTAX_INITCWND Y

RTAX_FEATURES N

RTAX_RTO_MIN Y

RTAX_INITRWND Y

Table 5-2. Route Types

Linux Symbol Error Scope

RTN_UNSPEC 0 RT_SCOPE_NOWHERE

RTN_UNICAST 0 RT_SCOPE_UNIVERSE

RTN_LOCAL 0 RT_SCOPE_HOST

RTN_BROADCAST 0 RT_SCOPE_LINK

RTN_ANYCAST 0 RT_SCOPE_LINK

RTN_MULTICAST 0 RT_SCOPE_UNIVERSE

RTN_BLACKHOLE -EINVAL RT_SCOPE_UNIVERSE

RTN_UNREACHABLE -EHOSTUNREACH RT_SCOPE_UNIVERSE

RTN_PROHIBIT -EACCES RT_SCOPE_UNIVERSE

RTN_THROW -EAGAIN RT_SCOPE_UNIVERSE

RTN_NAT -EINVAL RT_SCOPE_NOWHERE

RTN_XRESOLVE -EINVAL RT_SCOPE_NOWHERE

CHAPTER 5 ■ THE IPV4 ROUTING SUBSYSTEM

139

Route Flags
When running the route –n command, you get an output that shows the route flags. Here are the flag values and a
short example of the output of route –n:

U (Route is up)

H (Target is a host)

G (Use gateway)

R (Reinstate route for dynamic routing)

D (Dynamically installed by daemon or redirect)

M (Modified from routing daemon or redirect)

A (Installed by addrconf)

! (Reject route)

Table 5-3 shows an example of the output of running route –n (the results are organized into a table form):

Table 5-3. Kernel IP Routing Table

Destination Gateway Genmask Flags Metric Ref Use Iface

169.254.0.0 0.0.0.0 255.255.0.0 U 1002 0 0 eth0

192.168.3.0 192.168.2.1 255.255.255.0 UG 0 0 0 eth1

